MA1302	TRANSFO	ORN	MS Al	ND PA	RTIA	AL DI	FFEI	RENTIA	L EQ	QU	ATIO	NS	L	Т	Р	С
	·												4	0	0	4
OBJECTI	VES :													•		
• Te	o introduce the	basic	c conc	epts of l	PDE fo	or solv	ing sta	andard pa	rtial d	liffe	rential	equat	ions.			
• T	o introduce Fou	urier	series	s analys	sis whic	ch is c	entral	to many	appli	cati	ons in	engir	neering	apart	from	n its
us	se in solving bo	ounda	ary val	ue prob	olems.											
• T	• To acquaint the student with Fourier series techniques in solving one dimensional wave and heat flow											low				
рі	roblems used in	ı vari	ious si	tuations	s.											
• T	o acquaint the	stud	lent wi	ith Four	rier ser	ries teo	chniqu	es in sol	ving t	two	dimer	nsiona	1 heat	flow	proble	ems
us	sed in various si	situat	ions.													
• T	o acquaint the s	stude	ent witl	h Fourie	er trans	sform t	techni	ques used	in wi	ide	variety	of sit	uations	5.		
								_								
	PARTIAL I	DIFI	FERE	ENTIA	L EQ	UATI	IONS	- I			-				12	
Formation	of partial diffe	erent	tial eq	luations	s - Sir	ngular	integ	grals - So	olutio	ns	of star	ndard	types	of fi	rst or	der
partial diffe	erential equation	ons -	- Lagr	ange's	linear	r equat	t10n —	Integral s	surfac	ce p	assing	g thro	ugh a	curve	surf	ace
ortnogonal	to a system	0I	surfac	e-inon	ineat	rd for	m_{0} L	nierentia	u equ Acthe	uati	on –	_narp	it's m	letnoc	ı-spe	ciai
methous of	solution applie	icabi		ertain s	stanuar	1011	IIIS- Ja		leulo	a						
UNIT II	DADTIAL I	DIFI	FFDF		I FOI	TIATI	IONS	TT							12	
Homogenoi	I AKIIAL I	tial d	lifforo	ntial or		ns of	sacon	-11 d and hi	ahar	ord	or wit	h cor	octont	coaff	icion	te
Non homo	geneous Line	ear i	nartial	l diffe	rential	l equi	ations	of sec	ond	and	l hioł	ner o	rder v	with	const	ant
coefficients	- Partial dif	ffere	ential	equation	on re	educib	le to	equation	on w	vith	cons	stant	coeff	icient	s-par	tial
differential	equation of or	rder	two w	vith var	riable c	coeffi	cients	- 1							~ r	
UNIT III	FOURIER	SEF	RIES												12	
Dirichlet's	conditions – C	Gene	eral F	ourier s	series	– Ode	d and	even fu	nctior	ns -	- Half	rang	e sine	serie	s – F	Ialf
range cosin	e series – Con	nple	x forn	n of Fo	ourier s	series	– Pars	seval's ic	lentity	у —	Harm	onic	analys	is.		
UNIT IV	APPLICAT	TON	NS OF	F PAR	TIAL	DIFI	FERF	NTIAL	EQU	J A	ΓΙΟΝ	S			12	
Classificati	on of PDE – I	Met	hod o	f separa	ation o	of var	riables	- Fouri	er Sei	ries	s Solu	tions	of one	e dim	ensio	nal
wave equat	ion – One dim	nens	sional	equation	on of h	heat co	onduc	tion – St	teady	sta	te sol	ution	of two	o dim	ensic	onal
equation of	heat conduction	ion.														
UNIT V	FOURIER	TR	ANSF	FORMS	S										12	
Statement	of Fourier in	integ	gral t	heorem	n –	Fouri	ier ti	ansform	pai	ir	– Fo	ourier	sine	and	l cos	sine
transforms	– Properties –	Tra	nsforr	ns of si	imple f	functi	ons –	Convolu	ition	the	orem -	– Pars	seval's	iden	tity.	
														-		
										T	OTA	L:	60	PE	RIO	DS
OUTCO	MES :												•			
Upon succe	essful completi	ion (of the	course	stude	ents sh	bluo	be able t	0.							

- Understand how to solve the given standard partial differential equations.
- Solve differential equations using Fourier series analysis which plays a vital role in engineering applications.
- Appreciate the physical significance of Fourier series techniques in solving one dimensional heat flow problems and one dimensional wave equations.
- Appreciate the physical significance of Fourier series techniques in solving two dimensional heat flow problems in Mechanical Engineering.
- Understand the mathematical principles on transforms and partial differential equations would provide them the ability to formulate and solve some of the physical problems of engineering.

TEXT BOOKS :

- 1. Grewal B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, New Delhi, 2014.
- 2. Narayanan S., Manicavachagom Pillay.T.K and Ramanaiah.G "Advanced Mathematics for Engineering Students", Vol. II & III, S.Viswanathan Publishers Pvt. Ltd, Chennai, 1998.

REFERENCES:

- 1. Andrews, L.C and Shivamoggi, B, "Integral Transforms for Engineers" SPIE Press, 1999.
- 2. Bali. N.P and Manish Goyal, "A Textbook of Engineering Mathematics", 9th Edition, Laxmi Publications Pvt. Ltd, 2014.
- 3. Erwin Kreyszig, "Advanced Engineering Mathematics ", 10th Edition, John Wiley, India, 2016.
- 4. James, G., "Advanced Modern Engineering Mathematics", 3rd Edition, Pearson Education, 2007.
- 5. Ramana. B.V., "Higher Engineering Mathematics", McGraw Hill Education Pvt. Ltd, New Delhi, 2016.
- 6. Wylie, R.C. and Barrett, L.C., "Advanced Engineering Mathematics "Tata McGraw Hill Education Pvt. Ltd, 6th Edition, New Delhi, 2012.

ME1301	ENGINEERING THERMODYNAMICS	L	Т	Р	С
		3	0	0	3

OBJECTIVES:

- To understand the fundamentals of thermodynamics
- To study about the second law of thermodynamics and entropy principles.
- To understand the concept of steam power cycle.
- To study about the thermodynamic relations.
- To learn gas mixture concept and psychrometric processes .

(Use of Standard and approved Steam Table, Mollier Chart, Compressibility Chart and Psychrometric Chart permitted)

UNIT I BASIC CONCEPTS AND FIRST LAW

Basic concepts - concept of continuum, comparison of microscopic and macroscopic approach. System, Property, specific quantities, Temperature and Temperature scales. Quasi-static, reversible and irreversible processes. Displacement work and other modes of work. Zeroth law of thermodynamics, Thermodynamic

Q

states, equilibrium, process cycle, work, heat and other energy – First law of thermodynamics –application to closed and open systems – steady and unsteady flow processes. General Energy equation.

UNIT II SECOND LAW AND ENTROPY PRINCIPLES

Kelvin-Planck and Clausius statements-heat engines and heat pump, reversibility, Carnot cycle, Carnot theorem and performance. Clausius theorem, Concept of entropy, T-s diagram, Tds Equations, entropy change for - pure substance, ideal gases - different processes.

9

9

9

9

PERIODS

45

TOTAL:

UNIT III PROPERTIES OF PURE SUBSTANCE AND STEAM POWER CYCLE

Formation of steam and its thermodynamic properties, p-v, p-T, T-v, T-s, h-s diagrams. p-v-T surface. Determination of dryness fraction. Application of I and II law for pure substances. Ideal and actual Rankine cycle.

UNIT IV IDEAL AND REAL GASES, THERMODYNAMIC RELATIONS

Properties of Ideal gas- Ideal and real gas comparison- Equations of state for ideal and real gases- Reduced properties. Compressibility factor - Principle of Corresponding states. - Generalized Compressibility Chart and its use. Maxwell relations, Energy equation, Joule-Thomson Coefficient and Clausius Clapeyron equation.

UNIT V GAS MIXTURES AND PSYCHROMETRY

Mole and Mass fraction, Dalton's and Amagat's Law. Properties of gas mixture – Molar mass, gas constant, density, change in internal energy, enthalpy, entropy and Gibbs function. Psychrometric properties, Psychrometric charts. Property calculations of air vapour mixtures. Psychrometric processes – adiabatic saturation, sensible heating and cooling, humidification, dehumidification, evaporative cooling and adiabatic mixing. Simple Applications

OUTCOMES:

On successful completion of this course, the student will be able to

- Apply the first law of thermodynamics for simple open and closed systems.
- Apply second law of thermodynamics to open and closed systems and calculate entropy .
- Apply the concepts of Rankine cycle to steam power plant.
- Derive simple thermodynamic relations of ideal and real gases.
- Calculate the properties of gas mixtures and moist air and its use in psychometric processes.

TEXTBOOKS:

- 1. R.K.Rajput, "A Text Book Of Engineering Thermodynamics ",Fifth Edition,2017.
- 2. Nag.P.K., "Engineering Thermodynamics", 5th Edition, Tata McGraw-Hill, New Delhi, 2013..

REFERENCES:

- 1. Arora C.P, "Thermodynamics", Tata McGraw-Hill, New Delhi, 2019.
- 2. Borgnakke & Sonnatag, "Fundamental of Thermodynamics", 8th Edition, 2016.
- 3. Chattopadhyay, P, "Engineering Thermodynamics", Oxford University Press, 2016.
- 4. Michael J. Moran, Howard N. Shapiro, "Fundamentals of Engineering Thermodynamics", 8th

Edition.

ME1302 FLUID MECHANICS AND MACHINERY

OBJECTIVES:

- To understand the basic properties of fluid and solve problems on fluid statics.
- To understand fluid kinematics, fluid dynamics and to analyze and appreciate the complexities involved in solving the fluid flow problems.
- To understand the importance of dimensional analysis.
- To study the conservation laws in flow through pipes are studies.
- To understand the importance of various types of flow in pump and turbine.

UNIT I FLUID PROPERTIES AND FLUID STATICS

Units and dimensions -Properties of Fluids - density, specific weight, specific volume, specific gravity, viscosity, compressibility, vapour pressure, capillarity and surface tension. Fluid statics: concept of fluid static pressure - Atmospheric pressure, Gauge Pressure and Absolute pressure - Pressure measurements by manometers. Hydrostatic Forces on surface – buoyancy and floatation.

UNIT II FLUID KINEMATICS AND DYNAMICS

Fluid Kinematics – Classification and types of flow – Continuity equation for 3D flow in cartesian Coordinates - continuity equation for 1D flow. Fluid Dynamics - Forces acting on fluid in motion - Navier Strokes equation - Euler's Equation - Bernoulli's Equation. Application of Bernoulli's Equation - Venturi meter- Orifice meter-Pitot tube- Momentum Equation and its application to pipe bend.

UNIT III DIMENSIONAL ANALYSIS AND MODEL STUDIES

Need for dimensional analysis - Fundamental dimensions - dimensional homogeneity - Rayleigh's method and Buckingham Pi- theorem - Dimensionless Numbers – Model Analysis – Similitude – Model Law -Dimensionless parameters - application of dimensionless parameters – Model analysis.

UNIT IV FLOW THROUGH PIPES

Flow of viscous fluid through circular pipe - Reynold's experiment – Types of flow. Boundary Layer Theory. Energy and head losses through pipes – Major loss – Minor loss – Hydraulic Grade Line and Total Energy Line – Pipes in Series - Pipes in Parallel – Power Transmission by Pipe Line - Moody's diagram.

UNIT V PUMPS AND TURBINES

Impact of jets- Euler's equation- Theory of roto dynamic machines- Centrifugal pumps– working principlework done by the impeller - performance curves - Reciprocating pump- working principle. Classification of turbines – heads and efficiencies – velocity triangles. Axial, radial and mixed flow turbines. Pelton wheel, Francis turbine and Kaplan turbines- working Principles of operation of turbine calculation of main dimensions, regulation and performance - governing of turbines.

10

10

8

С

3

8

9

L

3

Т

0

Р

0

	ΤΟΤΑΙ	.: 45	PE	RIO	DS
OUTCOMES:					
On successful complet	ion of this course, the student will be able to				
Gain basic kno	wledge on fluid properties, solve problems on static.				
Solve problem	s on fluid kinematic and dynamic.				
• Mathematicall	y predict the nature of physical quantities.				
• Analyze and ca	lculate major and minor losses associated with pipe flow in				
piping network	S.				
• Analyze the pe	fromance of pumps and turbines.				
TEXTBOOKS:					
1. Bansal.R.K., '	'Fluid Mechanics and Hydraulic Machines", Laxmi Publications Pv	. Ltd., Ne	w De	lhi, 2	015.
2. Jain.A.K "	Fluid Mechanics" (Including Hydraulic Machines). Khanna Pu	blishers.			
Twelth Editi	on 2016	,			
I worth Dark					
REFERENCES:					
1. Graebel. W.P,	"Engineering Fluid Mechanics", Taylor & Francis, Indian Reprint, 2	.011			
2. Kumar K. L., "	Engineering Fluid Mechanics", Eurasia Publishing House(p) Ltd., N	lew Delhi	2016)	
3. Robert W.Fox,	Alan T. McDonald, Philip J.Pritchard, "Fluid Mechanics and Mach	inery", 20	11.		
4. Streeter, V. L.	and Wylie E. B., "Fluid Mechanics", McGraw Hill Publishing Co. 2	010			
EE1308	ELECTRICAL DRIVES AND CONTROL	L	Τ	P	С
		3	0	0	3
OBJECTIVES:					
To understand	l the basic concepts of different types of electrical machine	s and the	eir po	erfor	mance.
To understane	1 the concepts of Battery Technologies.				
• To study the d	lifferent methods of starting D.C motors and induction mo	tors.			
To understane	l the starting methods of DC & AC motors.				
• To study the c	onventional and solid-state drives DC & AC drives				
I					
UNIT I I	NTRODUCTION				9
Basic Elements – Typ	es of Electric Drives – factors influencing the choice of elec	trical dri	ves -	– hea	ting and
regard to thermal over	ling conditions and classes of duty – Selection of power ra loading Types of Batteries Characteristics of Batteries	ung for	unve	mot	ors with
regard to thermal over	butting. Types of Dutteries, Characteristics of Datteries.				
UNIT II I	DRIVE MOTOR CHARACTERISTICS				9
Mechanical characteri	stics - Speed-Torque characteristics of various types of load a	und drive	mote	ors –	Braking
of Electrical motors -	- DC motors: Shunt, series and compound - single phase	and thre	e pha	ase i	nduction

motors. Construction and Mechanical characteristics of BLDC motor.

UNIT III	STARTING METHODS				9				
Types of D.C Motor	starters – Typical control circuits for shunt and series motors – 7	Three ph	ase so	uirre	l cage				
and slip ring inducti	on motors.								
UNIT IV	CONVENTIONAL AND SOLID STATE SPEED CONTROL OF D.C.9DRIVES								
Speed control of D Introduction to cont	C series and shunt motors – Armature and field control, Ward rolled rectifiers & choppers-converter and chopper fed DC drives	·Leonarc	d cont	trol sy	/stem –				
			~						
UNIT V	CONVENTIONAL AND SOLID STATE SPEED CONTROL OF A.C.9DRIVES								
Speed control of thr	ee phase induction motor - Voltage control, voltage / frequency of	control, s	slip po	ower					
recovery scheme – I	Jsing inverters and AC voltage regulators – applications.								
	TOTAL	45	PE	RIOI)S				
OUTCOMES:									
 Differe Dc and Startin Solid s Solid s 	and their performance and battery Ac motor performances g methods of Ac and Dc motors tate speed control of Dc drives tate speed control of Ac drives	[,] techniq	ues						
1. Nagrath .I.J.	& Kothari .D.P, "Electrical Machines", Tata McGraw-Hill, 2006)							
2. Vedam Subr	ahmaniam, "Electric Drives (Concepts and Applications)", Tata	McGraw	-Hill,	2010	I				
REFERENCES:									
 Partab. H., " Pillai.S.K "A Singh. M.D. David Linde 	 Partab. H., "Art and Science and Utilisation of Electrical Energy", Dhanpat Rai and Sons, 2017 Pillai.S.K "A First Course on Electric Drives", Wiley Eastern Limited, 2012 Singh. M.D., K.B.Khanchandani, "Power Electronics", Tata McGraw-Hill, 2006. David Linden and Thomas B. Reddy, "Handbook of Batteries" McGraw-Hill Professional,2001 								
			1	_	~				
ME1303	PRODUCTION TECHNOLOGY		T	P	C				
		3	0	0	3				
 OBJECTIVES: To study the To learn abo To learn abo To provide processes. 	basic casting processes, various metal joining processes and gair ut the theory behind metal cutting and principle of working of ba ut the various plastic moulding and forming processes and to ma the knowledge on various bulk deformation processes and various	i relevan sic mach ke simpl arious a'	it skill nines e plas brasiv	ls. etic pa ve ma	rt. chining				

٦

Г

• To expose knowledge on sheet metal forming processes and special forming processes and to make small sheet metal parts.

UNIT I CASTING PROCESSES AND METAL JOINING PROCESSES

9

Introduction to production processes and its classifications - Pattern Types and Allowances. Moulding sand – Types & Properties. Moulding machines and its types. Melting furnaces. Sand casting defects. Special casting processes – Centrifugal casting and Investment casting. Introduction to welding processes - Principle of Gas welding and arc welding. Principle of Resistance welding, Gas metal arc welding, Submerged arc welding, Tungsten Inert Gas welding, Thermit welding and Electron beam welding

UNIT II THEORY OF METAL CUTTING AND BASIC MACHINES

Mechanics of metal cutting, orthogonal and oblique cutting, Mechanism of chip formation, Types of chips, Merchant's Circle Diagram, Cutting Force Measurements, Tool life & Cutting Tool Materials. Centre lathe, constructional features, specification, operations – taper turning methods, thread cutting methods, Capstan and turret lathes- tool layout, Shaper - Basic operations. Milling operations - types of milling cutter.

UNIT III MOULDING AND FORMING OF PLASTICS

Introduction to plastics - Moulding of Thermoplastics - Principle and applications of Injection moulding and its types, Blow moulding, Rotational moulding, Thermoforming and Extrusion. Moulding of Thermosets - Principle and applications of Compression moulding and Transfer moulding - Bonding of Thermoplastics - Fusion and solvent methods.

UNIT IV BULK DEFORMATION PROCESSES AND ABRASIVE MACHINING

Introduction - Hot and cold working of metals - Forging processes - Open and close die forging, Forging equipments. Rolling -Types of Rolling mills, Tube piercing and Defects. Principle of Extrusion and its types. Abrasive processes: grinding wheel – specifications and selection, types of grinding process – cylindrical grinding, surface grinding, centreless grinding and internal grinding.

UNIT V SHEET METAL AND SPECIAL FORMING PROCESSES

Sheet metal characteristics – shearing, bending and drawing operations – Stretch forming operations – Formability of sheet metal – Test methods –special forming processes – Working principle and applications – Hydro forming – Rubber pad forming – Metal spinning– Introduction of Explosive forming, magnetic pulse forming, peen forming, Super plastic forming – Micro forming

TOTAL: 45

PERIODS

OUTCOMES:

Upon the completion of this course the students will be able to

- Explain different metal casting processes, compare different metal joining processes merits and demerits
- Describe the mechanism of material removal processes and operational features of centre lathe, shaper

9

9

9

9

and milling machines

- Distinguish various methods of manufacturing plastic components
- Summarize various hot working and cold working methods of metals, grinding and other super finishing processes
- Explain various sheet metal making special forming processes

TEXTBOOKS:

- 1. Hajra Chouldhary S.K and Hajra Choudhury. AK., "Elements of workshop Technology", Volume I and II, Media promoters and Publishers Private Limited, Mumbai, 2008
- 2. Kalpakjian. S, "Manufacturing Engineering and Technology", Pearson Education India Edition, 2013

REFERENCES:

- 1. Rao, P.N. "Manufacturing Technology Foundry, Forming and Welding", 4th Edition, TMH-2013
- 2. Sharma, P.C., "A Text book of production Technology", S.Chand and Co. Ltd., 2014.
- 3. HMT, "Production Technology", Tata McGraw Hill, 1998.
- 4. Geofrey Boothroyd, "Fundamentals of Metal Machining and Machine Tools", McGraw Hill, 1984
- 5. Roy. A.Lindberg, "Process and Materials of Manufacture," Fourth Edition, PHI/Pearson Education 2006

ME1304	ENGINEERING METALLURGY	L	Τ	P	С
		3	0	0	3

OBJECTIVES:

- To study alloys formation, phase diagrams, invariant reactions and iron-carbon diagram
- To introduce concept of heat treatment processes, Explain isothermal transformation, continuous cooling diagrams and different surface heat treatment methods.
- To study the effect of alloying elements on ferrous and non-ferrous metals and properties, applications of various alloys.
- To explain the properties and applications of non-metallic materials and smart materials.
- To impart knowledge on the testing of mechanical properties of materials and principles of plastic deformation mechanisms.

Review (Not for Exam):

• Crystal structure – BCC, FCC and HCP structure – unit cell – crystallographic planes and directions, miller indices – crystal imperfections, point, line, planar and volume defects – Grain size, ASTM grain size number- Atomic Diffusion

UNIT I ALLOYS AND PHASE DIAGRAMS

Constitution of alloys – Solid solutions, substitutional and interstitial – phase diagrams, Isomorphous, eutectic, eutectoid, peritectic and peritectoid reactions, Iron – carbon equilibrium diagram. Classification of steel, properties and applications.

UNIT II HEAT TREATMENT OF METALS

Purpose of Heat treatment- Full annealing, stress relief, recrystallization and spheroidising - normalizing,

9

9

hardening and Tempering of steel. Isothermal transformation diagrams – cooling curves superimposed on I.T. diagram, CCR – Hardenability, Jominy end quench test – Austempering, martempering – case hardening, carburizing, Nitriding, cyaniding, carbonitriding – Flame and Induction hardening – Vacuum and Plasma hardening.

UNIT III FERROUS AND NON-FERROUS METALS

Effect of alloying additions on steel- α and β stabilizers– stainless and tool steels – HSLA, Maraging steels – Cast Iron – Grey, white, malleable, spheroidal – alloy cast irons, Copper and copper alloys – Brass, Bronze and Cupronickel – Aluminium alloys and Al-Cu – precipitation strengthening treatment – Mg-alloys, Bearing alloys, Ni-based super alloys and Titanium alloys.

UNIT IV NON METALS & SMART MATERIALS

Polymers– types, commodity and engineering polymers – Properties and applications of common thermosetting and thermoplastic polymers - Engineering Ceramics – Properties and applications-Composites- Classifications-FRP,MMC,CMC-Applications of Composites, Fiber Optic materials, Piezo Electrics – Shape Memory Alloys

UNIT V MECHANICAL PROPERTIES AND DEFORMATION MECHANISMS

Mechanisms of plastic deformation, slip and twinning – Types of fracture – Testing of materials under tension, compression and shear loads – Hardness tests (Brinell, Vickers and Rockwell) hardness tests, Impact test- lzod and charpy, fatigue and creep failure mechanisms-testing.

TOTAL: 45 PERIODS

9

9

9

OUTCOMES:

Upon the completion of this course the students will be able to

- Explain alloys and phase diagram, Iron-Iron carbon diagram and steel classification.
- Explain isothermal transformation, continuous cooling diagrams and different heat treatment processes.
- Clarify the effect of alloying elements on ferrous and non-ferrous metals
- Summarize the properties and applications of non metallic materials.
- Explain the testing of mechanical properties. .

TEXTBOOKS:

- 1. Williams D Callister, "Material Science and Engineering" Wiley India Pvt Ltd, Revised Indian Edition 2014
- 2. O.P. Khanna, A text book of Materials Science and Metallurgy, Khanna Publishers, 2003

REFERENCES:

- 1. Kenneth G.Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited, 2010.
- 2. Raghavan.V, "Materials Science and Engineering", Prentice Hall of India Pvt. Ltd., 2015.
- **3.** U.C.Jindal : Material Science and Metallurgy, "Engineering Materials and Metallurgy", First Edition, Dorling Kindersley, 2012

4.	Upadhyay. G.S. and Anish Upadhyay, "Materials Science and Engineering", Viva Books Pvt. Ltd.,
	New Delhi, 2006.

5. Avner, S.H., "Introduction to Physical Metallurgy", McGraw Hill Book Company, 1997.

EE1309	E1309 ELECTRICAL DRIVES & CONTROL LABORATORY L 1								
			0	0	4	2			
Objectives:			i			<u>.</u>			
To validate	the principle	es studied in theory by performing experiments in th	e laborato	ry					
		LIST OF EXPERIMENTS:							
1. Load te	st on DC Sh	unt & DC Series motor							
2. O.C.C & Load characteristics of DC Shunt and DC Series generator									
3. Speed of	3. Speed control of DC shunt motor (Armature, Field control)								
4. Load te	st on single	phase transformer							
5. O.C &	S.C Test on	a single phase transformer							
6. Regula	tion of an al	ternator by EMF & MMF methods.							
7. V curve	es and invert	ed V curves of synchronous Motor							
8. Load te	st on three p	bhase squirrel cage Induction motor							
9. Speed of	control of the	ree phase slip ring Induction Motor							
10. Study of	of DC & AC	Starters							
		Т	OTAL PI	ERIO	DS: 6	0			
Course Outcomes	5:								
• Ability to p	mform an ag	l above stavistic of different ale stricel messive							

• Ability to perform speed characteristic of different electrical machine

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

S.No.	NAME OF THE EQUIPMENT	Qty.
1	DC Shunt motor	2
2	DC Series motor	1
3	DC shunt motor-DC Shunt Generator set	1
4	DC Shunt motor-DC Series Generator set	1
5	Single phase transformer	2
6	Three phase alternator	2
7	Three phase synchronous motor	1
8	Three phase Squirrel cage Induction motor	1
9	Three phase Slip ring Induction motor	1

ME1305	PROD	UCTIO)N TI	ECH	NOI	LOG	GY L	ABO	RA	ТО	RY					L	Τ	Р	С	
		r														0	0	4	2	
Objectives:																				
• To	Study and	d practi	ce the	vari	ous c	opera	ratior	is that	ca	n be	per	for	mec	l in	lath	e, s	hape	r, dr	illing	,
mil	ling mac	chines of	etc. a	nd to	o eq	quip	with	n the	pra	actic	al l	kno	wle	edge	re	quir	ed in	the	core	e
ind	ustries.																			
					LIS	ST O	OF E	XPER	RIN	ЛЕМ	ITS	:								
Machinin	g and Ma	cutting	g time	estin	natio	ons fo	for:													
2. Laterne		Cutting																		
2. Interna	I I nread V	Cutting																		
3. Eccenti	ric Turnin	ng																		
4. Knurlir	ng																			
5. Hexago	onal Head	l Shapiı	ng																	
6.Contour	milling u	using v	ertical	mill	ing r	mach	hine													
7.gear cut	ting in m	illing n	nachin	e																
8.Gear ge	neration i	in hobb	ing m	achir	ne															
9.Gear ge	neration i	in gear	shapir	ng ma	achir	ne														
10.Tool a	ngle grind	ding wi	th too	l and	l Cut	tter G	Grind	ler												
11.Measu	rement of	f cutting	g force	es in	Milli	ling /	/ Tur	ning P	Pro	cess										
														Т	ОТ	AL	PER	IOD	S: 60	
Course Outco	mes:																			
Upon completion	on of this	course	studer	nts w	ill be)e														
• Able to	use diffe	erent ma	chine	tool	s to r	manu	ufact	turing	coi	mpo	nen	ts.								
• Able to	use diffe	erent ma	chine	tool	s for	r finis	ishing	g opera	atic	ons										

LIST OF EQUIPMENT FOR A BATCH OF 30 STUDENTS

1	Centre Lathes	7 Nos.
2	Shaper	1 No.
3	Horizontal Milling Machine	1 No
4	Vertical Milling Machine	1 No
5	Turret and Capstan Lathes	1 No each

6	Radial Drilling Machine	1 No.
7	lathe Tool Dynamometer	1 No
8	Milling Tool Dynamometer	1 No
9	Gear Hobbing Machine	1 No
10	Tool Makers Microscope	1 No
11	Gear Shaping machine	1 No
12	Centerless grinding machine	1 No
13	Tool and cutter grinder	1 No